If it's not what You are looking for type in the equation solver your own equation and let us solve it.
j^2+9j+14=0
a = 1; b = 9; c = +14;
Δ = b2-4ac
Δ = 92-4·1·14
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-5}{2*1}=\frac{-14}{2} =-7 $$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+5}{2*1}=\frac{-4}{2} =-2 $
| 3y-6-5y=-2y-6 | | 4(p-2)=3p-7 | | 3v+6-v=2v-2+5 | | 23y^2+47+2=0 | | (16b-3)-5(3b+4)=-4 | | 6x+29x-6=7(5x+9) | | 8x=−14 | | m^2+22m+21=0 | | y^2+33y=0 | | 9r+6=30r+9 | | 11/4=x+3/4 | | -2n^2-8n-30=0 | | -2w^2+800w=0 | | 7x=3+4x+7=10x+3 | | 3p^2+19p+16=0 | | x+2.5=-3.25 | | 12/18=m/17 | | x+2.5=3.25 | | -8(m-2)=-(m-2) | | 29k^2+35k=0 | | -8=a/6 | | 5/6x+7=47 | | (3x-6)^2(x-6)-(3x-6)(x-6)^2=0 | | 10v-30=10 | | y=9.53+688 | | 8(2x-7)=8(x-6) | | 3j^2+8j-3=0 | | 4x+17/18-13x-2/32+x/3=7x/12-x+16/36 | | 12m+(4m-10)=710 | | y=5^0.8*88 | | 4-7x=39-4 | | 3w-6+5=6w-10 |